Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.537
Filtrar
1.
World J Microbiol Biotechnol ; 40(6): 165, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630187

RESUMO

Bacterial reduction of hexavalent chromium (VI) to chromium (III) is a sustainable bioremediation approach. However, the Cr(VI) containing wastewaters are often characterized with complex conditions such as high salt, alkaline pH and heavy metals which severely impact the growth and Cr(VI) reduction potential of microorganisms. This study investigated Cr(VI) reduction under complex haloalkaline conditions by an Alteromonas sp. ORB2 isolated from aerobic granular sludge cultivated from the seawater-microbiome. Optimum growth of Alteromonas sp. ORB2 was observed under haloalkaline conditions at 3.5-9.5% NaCl and pH 7-11. The bacterial growth in normal culture conditions (3.5% NaCl; pH 7.6) was not inhibited by 100 mg/l Cr(VI)/ As(V)/ Pb(II), 50 mg/l Cu(II) or 5 mg/l Cd(II). Near complete reduction of 100 mg/l Cr(VI) was achieved within 24 h at 3.5-7.5% NaCl and pH 8-11. Cr(VI) reduction by Alteromonas sp. ORB2 was not inhibited by 100 mg/L As(V), 100 mg/L Pb(II), 50 mg/L Cu(II) or 5 mg/L Cd(II). The bacterial cells grew in the medium with 100 mg/l Cr(VI) contained lower esterase activity and higher reactive oxygen species levels indicating toxicity and oxidative stress. In-spite of toxicity, the cells grew and reduced 100 mg/l Cr(VI) completely within 24 h. Cr(VI) removal from the medium was driven by bacterial reduction to Cr(III) which remained in the complex medium. Cr(VI) reduction was strongly linked to aerobic growth of Alteromonas sp. The Cr(VI) reductase activity of cytosolic protein fraction was pronounced by supplementing with NADPH in vitro assays. This study demonstrated a growth-dependent aerobic Cr(VI) reduction by Alteromonas sp. ORB2 under complex haloalkaline conditions akin to wastewaters.


Assuntos
Alteromonas , Cromo , Metais Pesados , Cloreto de Sódio/farmacologia , Cádmio , Chumbo/toxicidade , Águas Residuárias , Metais Pesados/toxicidade
2.
Sci Rep ; 14(1): 8366, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600294

RESUMO

Understanding heavy metals in rivers is crucial, as their presence and distribution impact water quality, ecosystem health, and human well-being. This study examined the presence and levels of nine heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in 16 surface water samples along the Chao Phraya River, identifying Fe, Mn, Zn, and Cr as predominant metals. Although average concentrations in both rainy and dry seasons generally adhered to WHO guidelines, Mn exceeded these limits yet remained within Thailand's acceptable standards. Seasonal variations were observed in the Chao Phraya River, and Spearman's correlation coefficient analysis established significant associations between season and concentrations of heavy metals. The water quality index (WQI) demonstrated varied water quality statuses at each sampling point along the Chao Phraya River, indicating poor conditions during the rainy season, further deteriorating to very poor conditions in the dry season. The hazard potential index (HPI) was employed to assess heavy metal contamination, revealing that during the dry season in the estuary area, the HPI value exceeded the critical threshold index, indicating the presence of heavy metal pollution in the water and unsuitable for consumption. Using the species sensitivity distribution model, an ecological risk assessment ranked the heavy metals' HC5 values as Pb > Zn > Cr > Cu > Hg > Cd > Ni, identifying nickel as the most detrimental and lead as the least toxic. Despite Cr and Zn showing a moderate risk, and Cu and Ni posing a high risk to aquatic organisms, the main contributors to ecological risk were identified as Cu, Ni, and Zn, suggesting a significant potential ecological risk in the Chao Phraya River's surface water. The results of this study provide fundamental insights that can direct future actions in preventing and managing heavy metal pollution in the river ecosystem.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Humanos , Cádmio/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo/análise , Mercúrio/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , Rios , Tailândia , Poluentes Químicos da Água/análise
3.
Plant Cell Rep ; 43(4): 111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568247

RESUMO

Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.


Assuntos
Interações Ervas-Drogas , Metais Pesados , Metais Pesados/toxicidade , Processamento de Proteína Pós-Traducional , Solo
4.
Ecotoxicology ; 33(3): 239-252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573560

RESUMO

Despite the prevalence of discharge of large volumes of heavy-metal-bearing seawater from coal-fired power plants into adjacent seas, studies on the associated ecological risks remain limited. This study continuously monitored concentrations of seven heavy metals (i.e. As, Cd, Cr, Cu, Hg, Pb, and Zn) in surface seawater near the outfall of a coal-fired power plant in Qingdao, China over three years. The results showed average concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn of 2.63, 0.33, 2.97, 4.63, 0.008, 0.85, and 25.00 µg/L, respectively. Given the lack of data on metal toxicity to local species, this study investigated species composition and biomass near discharge outfalls and constructed species sensitivity distribution (SSD) curves with biological flora characteristics. Hazardous concentrations for 5% of species (HC5) for As, Cd, Cr, Cu, Hg, Pb, and Zn derived from SSDs constructed from chronic toxicity data for native species were 3.23, 2.22, 0.06, 2.83, 0.66, 4.70, and 11.07 µg/L, respectively. This study further assessed ecological risk of heavy metals by applying the Hazard Quotient (HQ) and Joint Probability Curve (JPC) based on long-term heavy metal exposure data and chronic toxicity data for local species. The results revealed acceptable levels of ecological risk for As, Cd, Hg, and Pb, but unacceptable levels for Cr, Cu, and Zn. The order of studied heavy metals in terms of ecological risk was Cr > Cu ≈ Zn > As > Cd ≈ Pb > Hg. The results of this study can guide the assessment of ecological risk at heavy metal contaminated sites characterized by relatively low heavy metal concentrations and high discharge volumes, such as receiving waters of coal-fired power plant effluents.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Monitoramento Ambiental/métodos , Cádmio , Chumbo , Metais Pesados/toxicidade , Água do Mar , Medição de Risco , Centrais Elétricas , China , Carvão Mineral , Solo , Poluentes do Solo/análise
5.
Curr Microbiol ; 81(5): 136, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598029

RESUMO

Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.


Assuntos
Antibacterianos , Metais Pesados , Animais , Humanos , Antibacterianos/farmacologia , Cobre , Metais Pesados/toxicidade , Ampicilina , Cloranfenicol
6.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611844

RESUMO

Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant.


Assuntos
Mercúrio , Metais Pesados , Ligantes , Sais , Metais Pesados/toxicidade , Mercúrio/toxicidade , Íons , Antibacterianos/farmacologia , Alcenos , Polímeros , Piridinas
7.
PLoS One ; 19(4): e0288190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625896

RESUMO

BACKGROUND: Exposure to heavy metals (cadmium, mercury, and lead) has been linked with adverse health outcomes, especially their nephrotoxic effects at high levels of exposure. We conducted a replication study to examine the association of low-level heavy metal exposure and chronic kidney disease (CKD) using a larger NHANES data set compared to previous studies. METHODS: The large cross-sectional study comprised 5,175 CKD cases out of 55677 participants aged 20-85 years from the 1999-2020 National Health and Nutrition Examination Survey [NHANES]. Logistic regression analysis was applied to estimate the associations between CKD and heavy metals [Cd, Pb, Hg] measured as categorical variables after adjusting with age, race, gender, socioeconomic status, hypertension, diabetes mellitus and blood cotinine level as smoking status. RESULTS: Compared to the lowest quartile of blood Cd, exposures to the 2nd, 3rd and 4th quartiles of blood Cd were statistically significantly associated with higher odds of CKD after adjustment for blood Pb and Hg, with OR = 1.79, [95% CI; 1.55-2.07, p<0.0001], OR = 2.17, [95% CI; 1.88-2.51, p<0.0001] and OR = 1.52, [95% CI; 1.30-1.76, p<0.0001] respectively. The 2nd, 3rd and 4th quartiles of blood Cd remained statistically significantly associated with higher odds of CKD after adjustment for blood cotinine level, with OR = 2.06, [95% CI; 1.80-2.36, p<0.0001], OR = 3.18, [95% CI; 2.79-3.63, p<0.0001] and OR = 5.54, [95% CI; 4.82-6.37, p<0.0001] respectively. Exposure to blood Pb was statistically significantly associated with higher odds of CKD in the 2nd, 3rd and 4th quartile groups, after adjustment for all co-variates (ag, gender, race, socio-economic status, hypertension, diabetes mellitus, blood cadmium, mercury, and cotinine levels) in all the four models. Blood Hg level was statistically significantly associated with lower odds of CKD in the 2nd quartile group in model 2, 3rd quartile group in model 1, 2 and 3, and the 4th quartile group in all the four models. CONCLUSIONS: Our findings showed that low blood levels of Cd and Pb were associated with higher odds of CKD while low blood levels of Hg were associated with lower odds of CKD in the US adult population. However, temporal association cannot be determined as it is a cross sectional study.


Assuntos
Diabetes Mellitus , Hipertensão , Mercúrio , Metais Pesados , Insuficiência Renal Crônica , Adulto , Humanos , Estudos Transversais , Cádmio/toxicidade , Inquéritos Nutricionais , Cotinina , Chumbo , Metais Pesados/toxicidade , Mercúrio/toxicidade , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Hipertensão/epidemiologia
8.
Sci Rep ; 14(1): 8023, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580805

RESUMO

Toxic metals are vital risk factors affecting serum ion balance; however, the effect of their co-exposure on serum ions and the underlying mechanism remain unclear. We assessed the correlations of single metal and mixed metals with serum ion levels, and the mediating effects of mineralocorticoids by investigating toxic metal concentrations in the blood, as well as the levels of representative mineralocorticoids, such as deoxycorticosterone (DOC), and serum ions in 471 participants from the Dongdagou-Xinglong cohort. In the single-exposure model, sodium and chloride levels were positively correlated with arsenic, selenium, cadmium, and lead levels and negatively correlated with zinc levels, whereas potassium and iron levels and the anion gap were positively correlated with zinc levels and negatively correlated with selenium, cadmium and lead levels (all P < 0.05). Similar results were obtained in the mixed exposure models considering all metals, and the major contributions of cadmium, lead, arsenic, and selenium were highlighted. Significant dose-response relationships were detected between levels of serum DOC and toxic metals and serum ions. Mediation analysis showed that serum DOC partially mediated the relationship of metals (especially mixed metals) with serum iron and anion gap by 8.3% and 8.6%, respectively. These findings suggest that single and mixed metal exposure interferes with the homeostasis of serum mineralocorticoids, which is also related to altered serum ion levels. Furthermore, serum DOC may remarkably affect toxic metal-related serum ion disturbances, providing clues for further study of health risks associated with these toxic metals.


Assuntos
Arsênio , Metais Pesados , Selênio , Humanos , Chumbo/toxicidade , Arsênio/toxicidade , Cádmio/toxicidade , Análise de Mediação , Mineralocorticoides , Intoxicação por Metais Pesados , Zinco , Ferro , Íons , China , Metais Pesados/toxicidade
9.
Environ Geochem Health ; 46(5): 149, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578493

RESUMO

There is limited evidence linking exposure to heavy metals, especially mixed metals, to stress urinary incontinence (SUI). This study aimed to explore the relationship between multiple metals exposure and SUI in women. The data were derived from the National Health and Nutrition Examination Survey (NHANES), 2007-2020. In the study, a total of 13 metals were analyzed in blood and urine. In addition, 5155 adult women were included, of whom 2123 (41.2%) suffered from SUI. The logistic regression model and restricted cubic spline (RCS) were conducted to assess the association of single metal exposure with SUI risk. The Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) were used to estimate the combined effect of multiple metals exposure on SUI. First, we observed that blood Pb, Hg and urinary Pb, Cd were positively related to SUI risk, whereas urinary W was inversely related by multivariate logistic regression (all p-FDR < 0.05). Additionally, a significant non-linear relationship between blood Hg and SUI risk was observed by RCS analysis. In the co-exposure models, WQS model showed that exposure to metal mixtures in blood [OR (95%CI) = 1.18 (1.06, 1.31)] and urine [OR (95%CI) = 1.18 (1.03, 1.34)] was positively associated with SUI risk, which was consistent with the results of BKMR model. A potential interaction was identified between Hg and Cd in urine. Hg and Cd were the main contributors to the combined effects. In summary, our study indicates that exposure to heavy metal mixtures may increase SUI risk in women.


Assuntos
Mercúrio , Metais Pesados , Incontinência Urinária por Estresse , Adulto , Feminino , Humanos , Inquéritos Nutricionais , Teorema de Bayes , Cádmio/toxicidade , Chumbo , Incontinência Urinária por Estresse/induzido quimicamente , Incontinência Urinária por Estresse/epidemiologia , Metais Pesados/toxicidade
10.
Plant Cell Rep ; 43(4): 99, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494540

RESUMO

KEY MESSAGE: In this manuscript, authors reviewed and explore the information on beneficial role of phytohormones to mitigate adverse effects of heavy metals toxicity in plants. Global farming systems are seriously threatened by heavy metals (HMs) toxicity, which can result in decreased crop yields, impaired food safety, and negative environmental effects. A rise in curiosity has been shown recently in creating sustainable methods to reduce HMs toxicity in plants and improve agricultural productivity. To accomplish this, phytohormones, which play a crucial role in controlling plant development and adaptations to stress, have emerged as intriguing possibilities. With a particular focus on environmentally friendly farming methods, the current review provides an overview of phytohormone-mediated strategies for reducing HMs toxicity in plants. Several physiological and biochemical activities, including metal uptake, translocation, detoxification, and stress tolerance, are mediated by phytohormones, such as melatonin, auxin, gibberellin, cytokinin, ethylene, abscisic acid, salicylic acid, and jasmonates. The current review offers thorough explanations of the ways in which phytohormones respond to HMs to help plants detoxify and strengthen their resilience to metal stress. It is crucial to explore the potential uses of phytohormones as long-term solutions for reducing the harmful effects of HMs in plants. These include accelerating phytoextraction, decreasing metal redistribution to edible plant portions, increasing plant tolerance to HMs by hormonal manipulation, and boosting metal sequestration in roots. These methods seek to increase plant resistance to HMs stress while supporting environmentally friendly agricultural output. In conclusion, phytohormones present potential ways to reduce the toxicity of HMs in plants, thus promoting sustainable agriculture.


Assuntos
Metais Pesados , Reguladores de Crescimento de Plantas , Ácido Abscísico , Citocininas , Giberelinas , Metais Pesados/toxicidade
11.
Plant Cell Rep ; 43(4): 103, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502356

RESUMO

KEY MESSAGE: Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.


Assuntos
Lactoilglutationa Liase , Metais Pesados , Aldeído Pirúvico/metabolismo , Plantas/metabolismo , Lactoilglutationa Liase/metabolismo , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Desenvolvimento Vegetal , Estresse Fisiológico/fisiologia
12.
Sci Total Environ ; 926: 171717, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38490419

RESUMO

Oxidation technologies based on peroxymonosulfate (PMS) have been effectively used for the remediation of soil organic pollutants due to their high efficiency. However, the effects of advanced PMS-based oxidation technologies on other soil pollutants, such as heavy metals, remain unknown. In this study, changes in the form of heavy metals in soil after using PMS and the risk of pollution to the ecological environment were investigated. Furthermore, two risk assessment methods, the mung bean germination toxicity test and groundwater leaching soil column test, were employed to evaluate the soil before and after PMS treatment. The results showed that PMS has a strong ability to degrade complex compounds, enabling the transformation of heavy metals, such as Cd, Pb, and Zn, from stable to active states in the soil. The risk assessments showed that PMS treatment activated heavy metals in the soil, which delayed the growth of plants, increased heavy metal content in plant tissues and the risk of groundwater pollution. These findings provide a new perspective for understanding the effects of PMS on soil, thus facilitating the sustained and reliable development of future research in the field of advanced oxidation applied to soil treatment.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/toxicidade , Metais Pesados/análise , Peróxidos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Plantas , Medição de Risco , China , Monitoramento Ambiental/métodos
13.
Sci Total Environ ; 924: 171700, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490408

RESUMO

The speciation, bioaccumulation, and toxicity of the newly deposited atmospheric heavy metals in the soil-earthworm (Eisenia fetida) system were investigated by a fully factorial atmospheric exposure experiment using soils exposed to 0.8-year and 1.8-year atmospheric depositions. The results shown that the newly deposited metals (Cu, Cd, and Pb) primarily accumulated in the topsoil (0-6 cm) and were present as the highly bioavailable speciation. They can migrate further to increase the concentrations of Cu, Cd, and Pb in soil solution of the deeper layer (at 10 cm) by 12 %-436 %. Earthworms tended to preferentially accumulate the newly deposited metals, which contributed 10 %-61 % of Cu, Cd, and Pb in earthworms. Further, for the unpolluted and moderately polluted soils, the newly deposited metals induced the significant oxidative stress in earthworms, resulting in significant increases in antioxidant enzyme activities (SOD, CAT, and GSH-Px). No significant differences were observed in the levels of heavy metals in soil solutions, bioaccumulation, and enzyme activities in earthworms exposed to 0.8-year and 1.8-year depositions, indicating the bioavailability of atmospheric metals deposited into soils was rapidly decreased with time. This study highlights the high bioaccumulation and toxicity of heavy metals to earthworm from the new atmospheric deposition during the earthworm growing period.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Cobre/toxicidade , Cobre/análise , Cádmio , Solo , Bioacumulação , Chumbo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise
14.
Sci Rep ; 14(1): 7552, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555404

RESUMO

Asbestos is widely used in construction, manufacturing, and other common industrial fields. Human activities such as mining, processing, and transportation can release heavy metals from asbestos into the surrounding soil environment, posing a health hazard to the mining area's environment and its surrounding residents. The purpose of the present study was to determine the extent of ecological and human health damage caused by asbestos pollution, as well as the primary contributors to the contamination, by examining a large asbestos mine and the surrounding soil in China. The level of heavy metal pollution in soil and sources were analyzed using methods such as the geo-accumulation index (Igeo), potential ecological risk index (RI), and positive matrix factorization (PMF) model. A Monte Carlo simulation-based health risk model was employed to assess the health risks of heavy metals in the study area's soil to human beings. The results showed that the concentrations of As, Pb, Cr, Cu, and Ni in the soil were 1.74, 0.13, 13.31, 0.33, and 33.37 times higher than the local soil background values, respectively. The Igeo assessment indicated significant accumulation effects for Ni, Cr, and As. The RI evaluation revealed extremely high comprehensive ecological risks (RI ≥ 444) in the vicinity of the waste residue heap and beneficiation area, with Ni exhibiting strong individual potential ecological risk (Eir ≥ 320). The soil health risk assessment demonstrated that As and Cr posed carcinogenic risks to adults, with mean carcinogenic indices (CR) of 1.56E - 05 and 4.14E - 06, respectively. As, Cr, and Cd posed carcinogenic risks to children, with mean CRs of 1.08E - 04, 1.61E - 05, and 2.68E - 06, respectively. Cr also posed certain non-carcinogenic risks to both adults and children. The PMF model identified asbestos contamination as the primary source of heavy metals in the soil surrounding the asbestos mining area, contributing to 79.0%. According to this study, it is recommended that management exercise oversight and regulation over the concentrations of Ni, Cr, Cd, and As in the soil adjacent to asbestos mines, establish a designated control zone to restrict population activities, and locate residential zones at a safe distance from the asbestos mine production zone.


Assuntos
Amianto , Metais Pesados , Poluentes do Solo , Humanos , Adulto , Criança , Solo/química , Monitoramento Ambiental/métodos , Cádmio/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Amianto/toxicidade , Carcinógenos/análise , Metais Pesados/toxicidade , Metais Pesados/análise , China , Medição de Risco
15.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542366

RESUMO

The ongoing anthropogenic pollution of the biosphere with As, Cd, Hg and Pb will inevitably result in an increased influx of their corresponding toxic metal(loid) species into the bloodstream of human populations, including children and pregnant women. To delineate whether the measurable concentrations of these inorganic pollutants in the bloodstream are tolerable or implicated in the onset of environmental diseases urgently requires new insight into their dynamic bioinorganic chemistry in the bloodstream-organ system. Owing to the human exposure to multiple toxic metal(loid) species, the mechanism of chronic toxicity of each of these needs to be integrated into a framework to better define the underlying exposure-disease relationship. Accordingly, this review highlights some recent advances into the bioinorganic chemistry of the Cd2+, Hg2+ and CH3Hg+ in blood plasma, red blood cells and target organs and provides a first glimpse of their emerging mechanisms of chronic toxicity. Although many important knowledge gaps remain, it is essential to design experiments with the intent of refining these mechanisms to eventually establish a framework that may allow us to causally link the cumulative exposure of human populations to multiple toxic metal(loid) species with environmental diseases of unknown etiology that do not appear to have a genetic origin. Thus, researchers from a variety of scientific disciplines need to contribute to this interdisciplinary effort to rationally address this public health threat which may require the implementation of stronger regulatory requirements to improve planetary and human health, which are fundamentally intertwined.


Assuntos
Poluentes Ambientais , Mercúrio , Metais Pesados , Poluentes do Solo , Criança , Humanos , Feminino , Gravidez , Cádmio/análise , Mercúrio/análise , Intoxicação por Metais Pesados , Poluição Ambiental , Monitoramento Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , China
16.
Biochem Biophys Res Commun ; 709: 149827, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38554600

RESUMO

This study explored the uptake of lead in the epigeic earthworm Dendrobaena veneta exposed to 0, 1000, and 2500 µg Pb/g soil. The soil metal content was extracted using strong acid digestion and water leaching, and analysed by means of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to estimate absolute and bioavailable concentrations of metals in the soil. The guts and heads of lead-exposed earthworms were processed into formalin-fixed and paraffin embedded sections for high-resolution multi-element metallomic imaging via Laser Ablation ICP-MS (LA-ICP-MS). Metallomic maps of phosphorus, zinc, and lead were produced at 15-µm resolution in the head and gut of D. veneta. Additional 4-µm resolution metallomic maps of the earthworm brains were taken, revealing the detailed localisation of metals in the brain. The Pb bioaccumulated in the chloragogenous tissues of the earthworm in a dose-dependent manner, making it possible to track the extent of soil contamination. The bioaccumulation of P and Zn in earthworm tissues was independent of Pb exposure concentration. This approach demonstrates the utility of LA-ICP-MS as a powerful approach for ecotoxicology and environmental risk assessments.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Ecotoxicologia , Chumbo/toxicidade , Chumbo/análise , Metais Pesados/toxicidade , Encéfalo , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
17.
Environ Geochem Health ; 46(4): 113, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478134

RESUMO

The closure or relocation of many industrial enterprises has resulted in a significant number of abandoned polluted sites enriched in heavy metals to various degrees, causing a slew of environmental problems. Therefore, it is essential to conduct research on heavy metal contamination in the soil of industrial abandoned sites. In this study, soils at different depths were collected in a smelting site located in Hunan Province, China, to understand the Cr distribution, speciation and possible risks. The results revealed that the high-content Cr and Cr(VI) contamination centers were mainly concentrated near S1 (Sample site 1) and S5. The longitudinal migration law of chromium was relatively complex, not showing a simply uniform trend of decreasing gradually with depth but presenting a certain volatility. The vertical distribution characteristics of chromium and Cr(VI) pollution suggest the need for attention to the pollution from chromium slag in groundwater and deep soil layers. The results of different speciation of Cr extracted by the modified European Community Bureau of Reference (BCR) method showed that Cr existed primarily in the residual state (F4), with a relatively low content in the weak acid extraction state (F1). The correlation analysis indicated that Cr was affected by total Cr, pH, organic matter and total carbon during the longitudinal migration process. The RSP results revealed that the smelting site as a whole had a moderate level of pollution. Soil at depths of 2-5 m was more polluted than other soil layers. Consequently, it is necessary to treat the site soil as a whole, especially the subsoil layer (2-5 m). Health risk assessment demonstrated that the soil chromium pollution was hazardous to both adults and children, and the probability of carcinogenic and non-carcinogenic risk was relatively high in the latter group. As a result, children should be a group of special concern regarding the assessment and remediation of soil contaminated with Cr. This study can provide some insight into the contamination characteristics, ecological and health risks of chromium in contaminated soils and offer a scientific basis for the prevention and control of chromium pollution at abandoned smelting sites.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo/química , Poluentes do Solo/análise , Cromo/toxicidade , Cromo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , China , Medição de Risco , Fracionamento Químico , Monitoramento Ambiental
18.
Environ Geochem Health ; 46(4): 129, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483651

RESUMO

The issue of potentially toxic elements (PTEs) contamination of regional soil caused by mining activities and tailings accumulation has attracted wide attention all over the world. The East Qinling is one of the three main molybdenum mines in the world, and the concentration of PTEs such as Hg, Pb and Cu in the slag is high. Quantifying the amount of PTEs contamination in soil and identifying potential sources of contamination is vital for soil environmental management. In the present investigation, the pollution levels of 8 PTEs in the Qinling molybdenum tailings intensive area were quantitatively identified. Additionally, an integrated source-risk method was adopted for resource allocation and risk assessment based on the PMF model, the ecological risk, and the health risk assessment model. The mean concentrations of Cu, Ni, Pb, Cd, Cr, Zn, As, and Hg in the 80 topsoil samples ranged from 0.80 to 13.38 times the corresponding background values; notably high levels were observed for Pb and Hg. The source partitioning results showed that PTEs were mainly affected by four pollution sources: natural and agricultural sources, coal-burning sources, combined transport and mining industry sources, and mining and smelting sources. The health risk assessment results revealed that the risks of soil PTEs for adults are acceptable, while the risks for children exceeded the limit values. The obtained results will help policymakers to obtain the sources of PTEs of tailing ponds intensive area. Moreover, it provides priorities for the governance of subsequent pollution sources and ecological restoration.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Metais Pesados/toxicidade , Metais Pesados/análise , Molibdênio/análise , Chumbo/análise , Lagoas , Monitoramento Ambiental/métodos , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Mercúrio/análise , Medição de Risco , China
19.
Environ Geochem Health ; 46(4): 131, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483704

RESUMO

Potato is one of the essential food products whose health quality is greatly influenced by soil contamination and properties. In the current study, we have investigated the physicochemical characteristics of agricultural areas and the accumulation of nitrite/nitrate and metals in potato products in Hamedan, Iran. After determining the physicochemical characteristics of soil samples from four agricultural regions of Hamedan, 48 potato samples were collected from these regions. The heavy metals and nitrate/nitrite content were determined by ICP-OES and calorimetric methods, respectively. A negative correlation was observed between soil pH changes with nitrite/nitrate content and the accumulation of some heavy elements in potatoes. Furthermore, a positive correlation was found between soil phosphorus content and lead accumulation in potato. In present study, the amounts of lead, nitrate, and nitrite in 83.3%, 56%, and 12% of the collected samples were higher than the permissible limit reported by the World Health Organization (WHO), respectively. The EDI range for nitrate and nitrite was determined to be 130-260 and 1.4-2.7 µg/kg/day, respectively, which is much lower than the RfD set by the US Environmental Protection Agency (USEPA) for nitrite and nitrate. Among metal pollutants, the toxic risk caused by lead in potato consumers was higher than the threshold limit. In conclusion, our findings showed that the physicochemical characteristics of the soil could effectively increase the availability of metal pollutants and nitrite/nitrate to the potato product and significantly reduce its health quality. Therefore, monitoring these pollutants in the soil-potato system, preventing the entry of industrial wastewater, and managing the use of agricultural fertilizers can effectively improve the health of this product for consumers.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Solanum tuberosum , Solo , Nitratos , Nitritos , Irã (Geográfico) , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , Monitoramento Ambiental
20.
Environ Geochem Health ; 46(4): 143, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520486

RESUMO

The aim of this study was to investigate the status of trace metals (As, Cr, Cu, Ni, Pb, Fe, and Zn) and health and carcinogenic risk associated then in the Ebolowa Municipal Lake (EML) basin. To this end, 21 water samples were collected from the EML and its two tributaries, Mfoumou and Bengo'o, and analyzed by Quantofix method (nanocolors and visiocolor ECO) by using the MACHEREY-NAGEL photometer. The data were processed using multivariate statistics. The results showed that all the physicochemical parameters (pH, EC, and TDS), with the exception of TDS, comply with were within WHO limits. The distribution of trace metals at the three sites investigated was as follows: Zn (80-400 ± 1.58 µg/L) > Cu (50-150 ± 9.38 µg/L) > Fe (10-40 ± 0.71 µg/L) > Pb (1-20 ± 3.02 µg/L) > As (1-9 ± 0.44 µg/L) > Ni (1-9 ± 1.48 µg/L). However, the highest values were observed in the EML and the Mfoumou River, where Pb pollution was noted. Statistical analysis showed that anthropogenic inputs increase the presence of Cr, Cu, Pb, and Zn. Trace Metal Pollution Index values were below 15 at all sites, illustrating low levels of pollution. The trace metal evaluation index values for the Bengo'o stream are pure (mean = 0.6), slightly affected in the Mfoumou stream (mean = 2.0), and moderately affected in the EML (mean = 2.2). The toxicity load index values illustrate that the waters studied are toxic. The non-carcinogenic (HI) and carcinogenic (CR) health risk index values suggest a risk linked to oral ingestion in the LME and Mfoumou watercourses. The latter appears to be the main source of allochthonous pollutant input to the EML.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Metais Pesados/toxicidade , Metais Pesados/análise , Lagos , Chumbo/análise , Poluição Ambiental/análise , Poluentes Químicos da Água/análise , Carcinógenos/análise , Oligoelementos/análise , Medição de Risco , África Central , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...